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Abstract. The generalized Dawson integral F ( p .  x )  is considered. Closed formulae are given 
for the nth derivatives with respect to the arguments x and p in terms of the function itself. A 
recursion relation is developed which m y  be regarded as the (n+ 1)st-order differential equation 
satisfied by F ( p ,  x ) .  It is shown that known results concerning Dawson's function are merely 
specific cases of the generalized Dawson equation. The application of the successive derivatives 
of F(2, x) in the context of the Voigt s p e c "  line profiles is demonstrated, 

1. Introduction 

The motivation of this study of Dawson's integral is provided by the analysis of certain 
non-linear, time-dependent atmospheric source-receptor relationships involving partial 
differential equations by hypergeometric series solution. 

Dawson's integral [l], 

frequently arises in various physical problems, such as spectroscopy, electrical oscillations 
and heat conduction. The integral is closely related to the modified and complex error 
functions as: 

Erfi(z) = -iErf(iz) = eZ2F(z) 

w(z) = e-zlErfc(-iz) = e-' + -F(z) 

(1.2) 

and 

2 2i 
(1.3) z/n 

respectively. For all complex values z tlie function satisfies the differential equations 

F'fz) + 2zF(z) = 1 (1.4) 

and fork 1 

F['+'](z) + 22 Frkl(z) + 2k F['-'](z) = 0 (1.5) 

where the conventional notation Fik l  is used to indicate the kth derivative of the function 
F ( z ) .  Note that due to (1.3), the complex error function w(z) is also a solution to the latter 
equation as may be verified by direct differentiation. If one expands F(z) about a point 
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x on the real axis, it can be shown that the coefficients d,, of the Taylor series satisfy the 
recurrence relation [2]: 

2 
n 

dn = --(x&I +d& > 2. 

A sequence of rational approximations to Dawson’s integral have appeared in the 
works of Cody et a1 [3] and McCabe [4] in the forms of Chebyshev polynomials and 
continued fraction expansions, respectively. Earlier work concerning the tabulation of F ( x )  
is described by those authors. 

The generalization of Dawson’s integral entails introducing the arbitrary positive 
parameter p in place of the second-order power appearing in the exponent of (1.1): 

~ ( p , x )  =[e+x~&. (1.7) 

For p > 2, F ( p ,  x ) .  has regular poles, while for 1 < p c: 2, F ( p ,  x )  has regular singular 
poles. 

The importance of this generalization is indicated in numerous problems of practical 
interest. The function F ( 3 , x )  has application in viscous fluid flow while, F ( p ,  qx) plays 
an important role in the inverse analysis of transient source-receptor problems, where it 
is distinguished as the ‘universal-source’ term [5].  The various derivatives of Dawson’s 
integral arise in the problems of time-dependent atmospheric dispersion involving transient 
sources and radiative transfer in the upper atmosphere. The integral also frequently appears 
in other branches of physics where kernel methods are used to describe transient transport 
phenomena in various media. 

An important property of F ( p ,  x) is that it gives an exact representation of the remainder 
in the truncated Taylor series for e-? 

In many physical and engineering applications this characteristic is used to model sums of 
exponentially decaying functions. To illustrate its close connections to higher transcendental 
functions, it is worthwhile to point out that the integral (1.7) can also be expressed in terms 
of the incomplete gamma function: 

or, with the aid of Kummer’s transformation, in terms of the confluent hypergeometric 
function M: 

F ( p , x ) = x M  l ; -+ l ; -xP  . (1.10) c 1 
The latter equation forms the basis of the development by Dijkstra [6], who gives a rapidly 
convergent continued fraction expansion for F f p ,  x). 

In the present paper the differential equation (1..5), listed by Cody et al [3] and McCabe 
141, and the recurrence relation (1.6) derived by Faddeyeva and Terent’ev [2] will be 
generalied for F ( p , x )  ( p  > 1). Further, the nth derivatives of the generalized Dawson 
integral with respect to x and p will be given in closed forms and in terms of the function 
F ( p ,  x) itself. An application for the repeated derivatives of F(x)  will be demonstrated 
through the expansion of the Voigt function occurring in astrophysical problems. 
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2. The generalized Dawson differential equation 

The first derivative of the generalized Dawson integral (1.7) gives rise to the differential 
equation 

(2.1) F'(p, x )  + p F ( p ,  x )  xp-' = 1. 

The nth derivative of F ( p ,  x )  can be obtained by using the Leibniz rule, as 

By a suitable substitution, this equation may be reduced in complexity, however, it will be 
still rather cumbersome to handle. In particular, it can be seen that the ith derivative of 
the integral in (2.2) is irreducible, while reduction of derivatives of the type dk(ec2')/dzk 
will entail a sum of the same type of derivatives. For the specific case of p = 2, it is 
readily seen that the last term on the right-hand side will entail Hermite polynomials due to 
Rodrigues' formula. The connection between Dawson's integral and Hermite polynomials 
will be further emphasized later in this section. 

In deriving a closed form for d"F(p ,  x)/dx" one may recognize that all derivatives of 
F ( p ,  x )  involve the sum of the lower-order derivatives of the same function. This way, it 
is possible to formulate a practical recursion-like identity as follows: 

~ 

Theorem I. For n 3 2 and for p =- 1, x > 0, the nth derivative of F ( p , x )  becomes 
expressible in terms of the sum of the first n - 1 derivatives of F ( p ,  x )  and may be written 
as 

(2.3) 

where p(') denotes the Stirling factorial polynomial of order k .  

being similar to the proof of the Leibniz formula. 

McCabe's result [4] and express it as the (n + 1)st-order Dawson differential equation: 

The proof may be substantiated by induction but omitted here since the steps are routine, 

This theorem together with the relation p("-"xP-"+' = (xP)["-;l enables us to generalize 

(2.4) 

It can be clearly seen that (1.5) is a special case of (2.4) corresponding to p = 2. In the 
particular case of p = 2, n = 1, (2.4) becomes a diffusion-type equation which may be 
satisfied by various other functions, for example e-x2. 

The relation between Dawson's integral and various orthogonal polynomials (Hermite 
and Laguerre, in particular) can be explored without difficulties by realizing that (2.4) may 
be regarded as a generalization of the Hermitian equation 

j " ( x )  + 2x f ' (x )  + 2n f = 0 (2.5) 

which is satisfied by 
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establishing thereby a relation between the derivatives of F ( 2 , x )  and the Hermite 
polynomials: 

The latter identity has important implications in the expansion of the Voigt function to be 
discussed in section 4 .  

3. The higher derivatives of F @, x) 

3.1. Derivatives with respect to x 

From (1.10) it is easily perceived that therecurrent derivatives of F ( p ,  x )  ,may be expressed 
in terms of Kummer's functions 

The disadvantage of this representation lies in the fact that M ( a ;  b; z )  is an infinite sum and 
the terminating hypergeometric series M(n; l / p  + n; -xP) is irreducible for all but some 
n. Thus, it may be rather difficult to obtain accwate function values for all arguments. On 
the ground of theorem 1, however, it is possible to construct the nth derivatives of F ( p ,  x) 
in closed form, in terms of the function itself: 

Theorem 2. For p 1 and n 2 2 

The coefficients Bf '  (k = 1,2,3,  . . . , n) and Dt) (k = 0 , 1 , 2 , 3 ,  . . . , n - 1) are defined as 
follows. 

For 3 6 k < n 
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For 3 < k < n - 1 

x ' E [ ( n - k ) p  - (n - k + j ) l  ] 4- ( p  - 1 )  [ (k - 1) ~ - ~ " ) + ( n - k ) ]  
j-1 

x E [ ( n  - k)p - (n - k + j)]. 
j=l  

Here a,,j is defined as 

0 i f i < j  
1 i f i >  j 3i.j = 1 

and in particular, one may note that 

(3.3) 

(3.4) 

i.;. Stirling numbers of the second kind. The notations E?' and Of) are used to signify 
the fact that these coefficients depend on the order of the derivative in addition to the index 
k .  They are not to be confused either with Stirling's numbers or with the Stirling factorial 
polynomial. 

Simple examination of (3.2) and (3.3) shows that E?' and Of) are closely related. The 
proof of theorem 2 along with the derivation of various recursion relations for Bt '  and 
Df) are presented in the appendix. 

Apart from its analytical significance, theorem 2 has important implications in the field of 
numerical computations. For example, by virtue of the efficient continued fraction expansion 
given by Dijksha [61, it becomes possible to calculate FIn] (p ,x )  accurately for both small 
and large values of x without the use of exponential functions. 

3.2. Derivatives with respect to p 

For the sake of completeness and since the method of proof has the merit of being simple, 
though lengthy. one may construct the nth derivative of F ( p , x )  with respect to p .  This 
time, however, the higher derivatives will not be expressible in terms of F ( p ,  x ) .  

Theorem 3. 

where Sr,. is the Kronecker symbol and 2k,* is defined as 
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Here the parameters em) are the Stirling numbers of the second kind. 

again the identity 
The proof of theorem 3 may be substantiated by mathematical induction, where once 

d 

dP 
-F["l(p, x) = F[""](p, x )  

can be shown by expanding d(F["](p, x))/dp and, subsequently, collecting the coefficients 
of the same powers. The development of the proof is not given here due to the rather 
lengthy derivation and because the procedure is analogous to the one shown in the case of 
the previous theorem. One may, however, note that with little effort, a similar form to (2.2) 
can also be found for d"(F(p, x))/dp". Unfortunately, as was the case for d" (F(p ,  x))/dx", 
this form is of little practical use, therefore it is omitted from the discussion. 

4. Application 

As was indicated in the introduction, higher derivatives of the generalized Dawson integral 
occur in the inverse or adjoint formulation of atmospheric source-receptor relations with 
transient source term. There, the'nature of the inverse problem necessitates the evaluation 
of a resolvent kernel entailing Dawson's integral. 

Moreover, in many physical problems dealing with radiative transfer in the upper 
atmosphere, or in astrophysics, the spectrum line shape resulting from a superposition of 
independent Lorentz and Doppler broadenings (known as Voigt profile) is described by the 
following function: 

For y > 0, the Voigt function (4.1) and the function 

make up the real and imaginary terms, respectively, in the integral representation of the 
complex error function w(z) 121. 

In the general expansion of K ( x ,  y )  in powers of y ,  the coefficients of even powers entail 
Hermite polynomials, while those of odd powers comprise successively higher derivatives 
of Dawson's integral F(2 ,  x )  171. 

(4.3) 

By employing the relation between Hermite polynomials and Dawson's integral (2.7), the 
series representation of the Voigt function (4.3) may be brought to a form that will only 
entail either Hermite polynomials or Dawson's integral. 

In the computer implementation of K ( x ,  y )  involving F["I(Z, x )  the recurrence relation 
(1.6) is generally used. In doing so, considerable care must be taken since this recurrence 
relation successively differentiates F(2,  x )  numerically, thus, very high precision of F(2 , ,x )  



On the recursive properties of Dawson's integral 2983 

is needed [7 ] .  Although accurate continued fraction representation of the generalized 
Dawson integral is available [6], this method is limited to small y and x to avoid 
excessive error due to the repeated differentiation, thereby severely impairing applications 
in atmospheric sciences where a wide range of y is encountered. 

Theorem 2 of this paper, on the other hand, allows us to express F["l(p, x )  solely 
in terms of F ( p ,  x )  without successive differentiations. This significantly improves the 
accuracy and computational efficiency of the Voigt function. 

In addition to the example discussed above, the developments presented in sections 2 
and 3 have applications in many other fields of physics such as acoustics, plasma wave 
propagation and in non-linear atmospheric source-receptor relations. 
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Appendix. Recurrence relations and proof of theorem 2 

Apart from the obvious connection between Df) and a series of BLT') given by (3.3) there 
are further important relations to be explored. Let us therefore, first try to establish some 
recursion relations involving Bf' and Of'. The formulae derived in the following will be 
instrumental in proving theorem 2. 

AI.  Recursion for Bf '  

Alternative expansions of (3.2) for B P I )  and B E ,  provide a relatively easy way to obtain 
the desired recursion formula. For'k > 3 we have: 

(n-k+4)Ut.,~ i - 1  n-k+4 
B ? + " = ( P - 1 )  ( ) [ ( i - 2 ) p - ( i - l ) ]  ... [ ( 1 - 2 ) p - ( l + k - 5 ) ]  

k 3  I 

(n-k+4)Ui.n+l 

m=l 
x , [ ( m - 2 ) d . - . ( m + k - 4 ) ] .  (AI) 

Here, we used the fact that 

[(m - 2 ) p  - (m + n  - 311 = [ (m - 2 ) p  - (m + k -4) l  

since when k reaches the last term of the expansion then, k = n + 1. Moreover, since in 
(3.2) 

(n-k+3)Ui ..-I (n-k+4)U&-t 
Bf'1k-I terminates at ~ k - 1  = c 

we find that 
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Subtracting (3.2) from (Al) we have 

where the first factor on the right-hand side is none other than the last term in the expansion 
of the last sum in (Al). Comparison of the above equation with (A2) yields the recurrence 
relation 

B(”+’) - B c , [ ( n  - k + 2 ) p  - n)]. (-44) (n) - 
’k - k 

Furthermore, upon comparing the definition for B f )  with the above equation, we find that 
the restriction k > 4 can be removed and (A4) is valid for all k 2 1 with the proviso of 
Bf’ s 0. 

A2. Recursion for D f )  

In seeking an expression for D f )  similar to (A4) we may rewrite (3.3) fork > 3 as follows 

(A51 (“+I) = B(”) + Q(‘”) + R y l )  
Dk k k 

where 

i 

x n [ ( n  - k + 1)p - (n - j ) ] .  (A71 
j=l  

Notice that 

(-+I) - Qk=3 - QF!’) = 0 

due to the upper limit (k - 3)an-I,k of the summation. If we now further expand (A7) 
employing the definition of B f ) ,  we have: 



Here, we may recognize that the last sum with respect to i, complete with the nested terms 
in the parentheses, is actually QP?l: Hence, the recursion for QF': 

The multiple sums in the above~equation can be written in terms of BEY" as follows 
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with the caveat that n - 1 2 k > 4. It can be further observed that the product in the curly 
brackets in (A10) can be expressed as 

= [(n - k + 1)p - (n - l ) ]RPl  - RP). (All) 

Hence, 

QF' = [(n - k + 1)p - (n - l)](BEyl' + Qfjl + R2,) - R, 

Employing the relation given by (A5) where 
respectively, we find that 

(A13 

+ 1 and k are replaced by n and k - 1, 

("+I) . 

QP" = [(n - k + 1)p - (n - l)]DP1 - Rf"' 

D y l )  = Bf) + [(n - k + I ) p  - (n - l ) ] D ~ , .  

( ~ 1 3 )  

which finally yields 

( ~ 1 4 )  

As in case of the recursion relation for B f ' ,  here too, upon comparing the definition of 
Df) with the above equation the condition k 2 4 can be relaxed. Thus, (A14) is valid for 
k >  1. 

Proof oftheorem 2. In substantiating the proof we may use mathematical induction where 
we assume that d(F["])/d.x = FLn+ll and deduce that it holds as it stands. The (n + 1)st 
derivative of F ( p ,  x )  can be written as follows: 
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Making use of the recursion relations (A4) and (A14), the above expression simplifies to 

References 

111 Dawson H G 1898 Proc. ~ ~ o n M a t h .  Soc. 29 519 
121 Faddeyeva V N and Terent'ev N M 1961 T&ks of Values ofthe Function w(r)  = e&(l +Zi/filj?l;ei-dt) 

for Complex Argument (New York Pergamon Press) (hslation) 
[3] Cody W I, Paciorek K A and Thacher H C 1970 Math. Comp. 24 171 
[4] McCabe I H 1974 Math. Comp. 28 811 
[SI S j o  E 1991 The Generalised Dawson Integral ap a Universal Source Term in Soc&e-Receptor Relations 

[6] Oijksira D 1977 Math  Comp. 31 503 
[7] Armstrong B H 1967 J. Quanr. Speclm.~c. Rdia t .  Transfer 7 61 

(Int. Conf on Industrial and Applied Mathematics (ICIAMJ. Warhifigton DC 1991) 


